
Computer Science Activity—Random Walker

ASSIGNMENT OVERVIEW
In this assignment you’ll be creating a creating a graphical simulation of a “random walker” who moves
around in random directions in a 2-dimensional world. The random walker begins at the origin (or center
of the screen) and each “turn” moves to a randomly selected adjacent square. This process continues until
the random walker returns to the origin.

This assignment is worth 50 points and is due on the crashwhite.polytechnic.org server at 23:59:59 on the date
given in class.

BACKGROUND
Simulating a random walker on the computer is a relatively straightforward process, although there are
multiple ways to do it. Your simulation of this process will probably follow one of these strategies:

• Non-graphical Walker
Set the walker’s original x- and y-coordinates to 0, 0, and then randomly change one or both of
those values by 1 until they return to the values 0, 0. This is the essence of what all versions of the
program will be doing, although it’s not very interesting to look at.

• Graphical Text-based Walker (no path)
Keep track of the walker’s coordinates as above, but every turn, print out the “world” on-screen.
Each space in the world is represented by a “.”, and the walker itself is represented by an “@”. If
you have the ability to clear the screen or terminal window, a crude animation effect can be seen as
the walker attempts to return to the origin.

• Graphical Text-based Walker (with path)
It might be interesting to see a record of the path followed by the walker. In this strategy, a two-
dimensional array (a “list of lists” in Python) can be used to keep a record of where the walker is
(“@”) and where the walker has been (“+”). (A “sparse array” might also be used to track the
walker’s progress.)

• Graphical pixel-based Walker (with path)
Using Python’s built-in Turtle graphics, the Processing platform, or some other graphics strategy, a
larger world can be display on the screen (800 pixels across by 600 pixels high, for example), with
the walker represented by a colored pixel or shape, and its path represented by a different colored
pixel or shape.

PROGRAM SPECIFICATION
Create a Python program, with associated functions, that:

a. creates a 2-dimensional list of lists on which the simulation will run (optional)
b. initializes variables that indicate the location of the random walker
c. updates the walker’s location according to random values
d. keeps track of the number of steps taken
e. displays the walker’s position and steps taken (using text, text-based graphical display, pixel-based

graphics)
f. continues until the walker returns to its starting position

DELIVERABLES
random_walker.py

To submit your assignment for grading, copy your file to your directory in
/home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES
• This program will probably consist of a main program and 3-4 functions. You’ll definitely have a

main() function, and possibly a create_grid() function, a print_grid() function, and a
move() function.

• The two-dimensional grid used in this assignment can be created in Python as a “list of lists.” For
information on how to create this data structure, you might consult the “Getting Started” section
below.

• The simulation will probably have one of two different strategies for changing the walker’s
location.
◦ In a simple “North-South-East-West” strategy, a random direction is selected and the

corresponding x- or y-value changed accordingly.
 import random
 dir = random.randrange(4)
 if dir == 0:
 x = x + 1
 elif dir == 1:
 y = y + 1
 elif dir == 2:
 x = x - 1
 else:
 y = y - 1

◦ A more complex 8-direction strategy can be used by potentially changing both x- and y-values
at the same time, or by using simple trigonometry to determine the next location:

import random
import math

angle = random.random() * 2 * math.pi
x = x + math.cos(angle)
y = y + math.sin(angle)

• If using the text-based display, you’ll want to clear the screen between the display of successive
generations. In Apple’s macOS ou can use this code for that purpose:

import os

os.system(“clear”)

• If you find that the simulation runs faster than your computer display can refresh, producing odd
flickering effects., you can insert a brief delay between screen refreshes. You can use this code to
introduce a pause for some number of seconds:

import time

time.sleep(0.1) # delays program for 0.1 seconds

GETTING STARTED
1. With paper and pencil, and perhaps in collaboration with a partner, sketch out the functions that

you’ll be using in this simulation, perhaps using pseudocode.

2. In a text editor, begin writing a random_walker.py program that you will submit for this
assignment.

3. Write a create_grid() function that you will use to construct and manipulate the initial board.

4. The 2-dimensional grid that is used for the walker’s virtual world is constructed as follows (code
and comments on the left, explanation on the right).

set up empty grid as a list which
will contain the row
grid = []

identify number of rows, columns
rows = 20
cols = 40

for each row in our empty grid,
create a list that will include
all the columns
for row in range(rows):
 grid.append([])

 # for each row list, append an
 # item that will represent the
 # value at that column
 for col in range(cols):
 grid[row].append(‘.’)

Here’s what’s actually happening in the computer.

grid = []

rows = 20
rows = 40

row = 0
grid[[]] We’ve appended an empty list
 to our grid list.

col = 0
grid[[‘.’]] We’ve appended an item into
 the list at grid[0].

The next time trough the col loop we’ll have:
col = 1
grid[[‘.’, ’.’]]

and

col = 2
grid[[‘.’, ‘.’, ‘.’]]

and so on. When it’s time for the row loop to repeat again:

row = 1
grid[[‘.’, ‘.’, ‘.’], []]

Note that we’ve appended a new column list to our rows.
Now the row list begins again...

col = 0
grid[[‘.’, ‘.’, ‘.’], [‘.’]]
col = 1
grid[[‘.’, ‘.’, ‘.’], [‘.’,‘.’]]

and so on...

5. Write a print_grid() function that will display the world. Once the two-dimensional “list of lists
has been created, displaying that list on screen is relatively straightforward.

for row in range(len(grid)):
 for col in range(len(grid[0]):
 print(grid[row][col],end=’’) # Keep every column on same row
 print() # After printing all columns,

 # space down to next row

6. Write a move() function that will calculate the next location of the random walker.

7. Test each bit of code as you go, making sure that one piece works before you proceed on to the next
section. You’ll repeatedly run through this edit-compile-test, edit-compile-test process to
progressively find bugs and fix them while you’re writing your program, not afterwards.

8. Save your program from time to time, and once a day or so, save a backup copy of it on another
device or machine: a flash drive, your home folder on the crashwhite.polytechnic.org server, etc.

9. When your program is completed (but before the deadline), copy a final archived package to the
server as indicated above.

REFERENCES
https://en.wikipedia.org/wiki/Random_walk
https://en.wikipedia.org/wiki/Random_walker_algorithm

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)
1. What is a cellular automata?

2. Names have been given to many of the forms that arise in a typical game of Life. A block, beehive, or
loaf, is not uncommon, and you’re sure to see a blinker. If you’re lucky, you might see a glider
skittering across the screen.

3. Conway’s original game of Life is a 2-dimensional cellular automata, with a set of rules that govern
the calculation of future states. What would a 1-dimensional cellular automata look like? What rules
would allow one to calculate future states? See
https://en.wikipedia.org/wiki/Elementary_cellular_automaton for an interesting discussion.

4. Would you get a glider tattoo? Would you buy a 1-d cellular automata scarf?

SAMPLE INTERACTIONS

Random Walker who doesn’t wrap when wandering

Random Walker who wraps when wandering

