
Computer Science Programming Project—Game of Life

ASSIGNMENT OVERVIEW
In this assignment you’ll be creating a program called game_of_life.py, which will allow the user to run
a text-based or graphics-based simulation of John Conway’s game of Life on the computer.

This assignment is worth 75 points and is due on the crashwhite.polytechnic.org server at 23:59:59 on the date
given in class.

BACKGROUND
John Conway’s game of Life is a type of cellular automata that demonstrates how simple rules can lead to
complex patterns or behaviors.

In Life, the “world” is simulated on a large, two-dimensional grid, with each cell in the grid either empty or
occupied by an “organism.” In the course of a turn, the contents of each cell are determined by looking at
the eight cells surrounding it. In the basic game, an organism in one cell will be born, or live, or die,
according to the following rules:

1. A live cell with < 2 neighbors will die (due to under population).
2. A live cell 2-3 neighbors lives on to the next generation.
3. A live cell with > 3 neighbors dies (due to overpopulation).
4. An empty cell with 3 neighbors becomes a live cell (from reproduction).

In Figure 1, the cell whose neighbors are being counted is at the center and colored black. (In the
program’s output, however, all “live” cells will have the same color, shape, or designation—see the Sample
Interactions at the end of this document.) The neighbors in the eight surrounding squares are colored gray,
and in this first case, the black colored cell will “die” during this generation due to overpopulation in this
area of the board—it has four or more occupied cells around him.

In Figure 2 the live cell at the center will survive into the next generation because it has 2-3 neighbors
around it.

In Figure 3, the empty cell in the center will be the site of a live cell in the next generation (indicated here
by an uncolored dashed circle) , thanks to the existence of the three neighbors surrounding it.

See https://en.wikipedia.org/wiki/Conway's_Game_of_Life for further information on this game.

The model for this game might take a number of forms depending on how you choose to code it: a
boolean “list of lists” with live cells True and empty cells False; a str “list of lists” with “.” and “0”; an
int “list of lists” with 0s and 1s. This Model of the game is internal, and isn’t something that the user will
have any direct interaction with.

The view for the game that the user sees is also up to you: a text-based version might simply display the
strings in your array, or display characters based on the true-false values in a boolean array; a graphics-
version will take the cells and display them as pixels, or perhaps as squares in a grid.

Running a simulation consists of establishing a “board” for the grid of cells, populating the cells with an
initial “seed” generation, and then watching the population on the board evolve over time as successive
generations are produced according to the population rules above.

PROGRAM SPECIFICATION
Create a Python program, with associated functions, that:

a. includes appropriate documentation
b. creates a 2-dimensional list of lists on which the simulation will run
c. populates the array randomly (or possibly by user selection of cells)
d. displays the initial state of the array on screen
e. uses the basic rules of Conway’s Life to calculate a new generation
f. displays the new state of the array on screen
g. repeats this process until the user breaks out of the program

DELIVERABLES
game_of_life.py

To submit your assignment for grading, copy your file to your directory in
/home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES
• This program will probably consist of a main program and 2-3 functions. You’ll definitely have a

main() function, and possibly a create_empty_world() function, a fill_world() function, a
print_world() function, a count_neighbors() function, a get_next_generation()
function...

• Because this simulation is observed via a display, you’ll need to decide whether you want to run a
text-based simulation or a graphics-based simulation. The text-based simulation is easier to
program but doesn’t look as good, while the graphics-based version allows for greater detail (the

cells are smaller), at the cost of increased programming complexity.

• If using the text-based display, you’ll want to clear the screen between the display of successive
generations. In Apple’s macOS you can use this code for that purpose:

import os

os.system(“clear”)

• To create the initial seed generation of cells, have the program randomly populate the board. As a
follow-up option you can either have the user specify cells to be populated in the first generation.

• You’ll actually need two 2-d arrays when running this simulation: one for the current population
state, and one that you’ll create for the next population when the rules of Life are applied. Once the
rules have been applied to completely create the entire next population, the contents of that array
will be transferred into the original array, and the process repeats from there.

• When counting neighbors, the eight squares surrounding a given cell should be evaluated using a
nested for loop. If a given cell is populated, a sum counter is incremented, and the final result of
that sum counter is used to determine the fate of that cell in the next generation. In the example
below, board[1][4] has eight cells around it that should be evaluated. Note that gray cells in the
example are not part of the board, and should not be evaluated. Attempts to identify a cell that is
outside the bounds of the board–when looking at board[0][0], for example–will cause an error.

• You will probably find that the simulation runs faster than your computer display can refresh,
producing some odd flickering effects. Most programs will require a brief delay between screen
refreshes. You can use this code to introduce a pause for some number of seconds:

import time

time.sleep(0.1) # delays program for 0.1 seconds

GETTING STARTED
1. With paper and pencil, and perhaps in collaboration with a partner, run a small, simple Life

simulation on paper to make sure you understand the rules.

2. Identify what the main components are that you’ll need to include in your program.

3. Sketch out the basic flow of your program using a flowchart, and write some pseudocode that you
can use to begin implementing those main components.

4. Start a new game_of_life.py program that you will submit for this assignment.

5. Write a fill_world() function that you will use to construct and manipulate the initial board.
Also, write a print_world() function that will display the world. Test these classes before moving
on.

6. Write a get_next_generation() function that will calculate what the next generation of cells will
look like. This function may use an additional function called count_neighbors() that you can
write.

7. Much of your program will consist of working through the contents of the board. It is common to
use nested loops for this process:

for row in range(rows):
 for col in range(cols)
 # do stuff with board[row][col]

8. Test each bit of code as you go, making sure that one piece works before you proceed on to the next
section. You’ll repeatedly run through this edit-compile-test, edit-compile-test process to
progressively find bugs and fix them while you’re writing your program, not afterwards.

9. Save your program from time to time, and once a day or so, save a backup copy of it on another
device or machine: a flash drive, your home folder on the crashwhite.polytechnic.org server, etc.

10. When your program is completed (but before the deadline), copy a final archived package to the
server as indicated above.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)
1. What is a cellular automata?

2. Names have been given to many of the forms that arise in a typical game of Life. A block, beehive, or
loaf, is not uncommon, and you’re sure to see a blinker. If you’re lucky, you might see a glider
skittering across the screen.

3. Conway’s original game of Life is a 2-dimensional cellular automata, with a set of rules that govern
the calculation of future states. What would a 1-dimensional cellular automata look like? What rules
would allow one to calculate future states? See
https://en.wikipedia.org/wiki/Elementary_cellular_automaton for an interesting discussion.

4. Would you get a glider tattoo? Would you buy a 1-d cellular automata scarf?

SAMPLE INTERACTIONS

John Conway's Game of Life
..........00..............00........0...
........0...0....0........0.0......00...
.........0...0..000.........0..0........
...00.........0.0..0...0.0.0.0..0....0.0
00.0..0...0...0..000..0....00..00.......
...0...0..0.......0....0..0...0.000000.0
....00..0...............00.....0....000.
......00......................0.........
......0........0...............0........
00.....0......00...............0.....0..
00...0...........0..0............0....0.
....000........0000.0.......0..........0
...0.0000...........0....0...0.......0.0
..................00.........0.........0
............................0...........
......00.................0..............
.........0.............00...............
......0...0.............................
.......00.0.............................
.........0..............................

Generation: 10

John Conway's Game of Life
...........0..............00.......00...
.........0000...000.......0.0......00...
.............0.00.0.......0.00......0...
..000........00.0..0......00.00.0.......
...0...........0.0.0..000..0000...00.0..
..00.000.0.......000...00000..0..000....
....00..0...............00....00000...0.
......00......................00.....0..
......0.......00..............00........
00....0.......000...............0.......
00..00........0..000..................0.
................000.00.................0
.......0........0...0.......00.........0
......00...........0........00........0.
..
........................0...............
......00................0...............
.......00.0.............................
.......00.0.............................
........00..............................

Generation: 11

John Conway's Game of Life
...........00....0........00.......00...
..........000..00.0......00.00.......0..
...0......00.0....00.....00...0....00...
..000........0.....0...0.00....0...00...
.....00.......00.0.00.0............00...
..00.0000.......00.0..0....0........0...
...00...0.........0....0.....0.....0....
......00.....................0...0......
.....00.......0.0.............0.0.......
00....0......0..000............0........
00...0........0....00...................
...............00...00................00
......00........0.0.00......00........00
......00....................00..........
..
..
......000...............................
..
..........0.............................
.......000..............................

Generation: 12

