
Computer Science Activity—Introduction to Graphics

ASSIGNMENT OVERVIEW
In this assignment you’ll be writing a series of small programs that present information graphically
on the computer screen, and learning about the coordinate systems used by the computer.

This assignment is worth 30 points and should be uploaded by the date given in class.

BACKGROUND
There are two ways that a computer can display information—data, a diagram, or an image
—“graphically” on the computer screen: using text, and using pixels. Although text-based
graphical display of information has been in use from the very beginning of computing, the first
personal computer with a pixel-based graphical user interface (GUI) was the original Macintosh
Computer, released in 1984.

Although pixel-based graphical displays are currently the most dominant graphical presentation
mode in most peopleʹs experience, you may have occasion to interact with a text-based display as
well. Here are two examples:

ASSIGNMENT SPECIFICATION
Write three programs that will display take a series of values and display them in graphical form:

1. horz_bar
This program begins by defining a list/array of 10 values, and then displays them as a
series of horizontal bars represented by text characters. The bars are proportional to the
magnitude of the value.

2. vert_bar
Takes a list/array of 10 values and displays them as a series of vertical bars represented by
text characters.

3. vert_graph
Takes a list/array of 10 values and displays them as a series of vertical bars represented by
rectangles.

DELIVERABLES
horz_bar.py, vert_bar.py, and vert_graph.pyde

These three files will be developed by you based on details in this document. To submit your
assignment for grading, copy your files to your directory in /home/studentID/forInstructor/
at crashwhite.polytechnic.org before the deadline given in class.

ASSIGNMENT NOTES
■ horz_bar is a relatively straightforward program to write: given the values in a list, print a

number of horizontal characters (use a * ?) that is proportional to the magnitude of each
value. Begin by using nested loops to go through the values and printing a number of
asterisks that corresponds exactly to each value in the list (see sample output). Then...

■ Devise a formula that will print out a number of asterisks that is proportional to the relative
magnitude of the values. Youʹll need to assume a certain screen width (80 characters is a
standard value), and youʹll need know the largest number in your list of values so that you
can calculate the appropriate scale. Store those scaled values in a new array and print the
asterisk bar graph based on those values.

■ Scaling example: if we have a list of values
values = [30, 60, 1, 120, 150, 180, 210, 270, 300, 240]

and the width of the screen is just 80 characters, we need to calculate a new value where
the maximum value in our list has the maximum width (80 characters). Consider this as a
proportion, where the scaled value can be calculated as a fraction of the width of the
screen:

scaled_values[i] = values[i] / max(values) * width

■ vert_bar uses the same strategies to determine the scaled output, but... how do we tilt our
graph sideways so that the bars become columns? Letʹs say that we've assumed a certain
screen height for the display (I'm assuming 12 here), and using that, I've scaled output to
produce the list
scaled_values = [1, 2, 0, 4, 6, 7, 8, 10, 12, 9]
We know that the vertical bar graph we want to produce should look something like this.
(I’ve included the numeric values for each column below the graph—you don’t need to
print those in your output.)

 *
 *
 **

 * *******
** *******
1204671198
 02

■ vert_bar is a little bit tricky because we're trying to print a vertical graph from the top
down. We'll need to set up a loop that runs from the highest value in our list (use Python’s
max() function to determine what that is) down to the lowest. Then we’ll set up a loop to
move across the columns (the values in our list). For each value, if a given column has a
value that is equal to or greater than the row we're printing, we’ll print an asterisk for it. If
not, we’ll print a blank space there so we can continue across this row, filling in the other
columns as needed.)
So, if the height is 12, we create one row-loop that sets row from 12 to 1 (backwards), and
a second nested column-loop that goes through every item in my scaled values:

for i in range(len(scaled_list)):
 if scaled_list[i] >= row:
 print("*",end='')
 else:
 print(" ",end='')

■ The graphical version of the vertical bar graph, vert_graph, relies on the same kind of
logic as vert_bar used, although now we're working at the precision-level of a pixel on
the screen. Using graphics with computers is necessarily more complex because different
types of hardware—the monitor in this case—work differently. The drivers for your local
computer manage most of the heavy lifting here, but it's for this reason that graphics
programs have to run locally, on your own machine. The course server won't be able to
display graphics output for you.

■ We'll use the Processing system for displaying our graphics. This assignment assumes you
have some facility with that.

■ Let's begin by assuming the same list of values that we used above:
values = [30, 60, 1, 120, 150, 180, 210, 270, 300, 240]
We'll need to produce a scaled set of values so that the columns we draw fit nicely on the
screen. Before when we did this we used a height based on the number of character lines I
had available to me (12). Now, I've got hundreds of pixels available for drawing, so I'll need
to change my scale calculation based on the height of the window. I'll say that my window
is going to be 800 pixels wide-by-600 pixels tall. So, the height of my window is 600 pixels,
or maybe a little less so I can leave room for axes and labels later on.

height = 500
values_scaled = []
max_value = max(values)
for i in range(len(values)):
 values_scaled.append(int(height * values[i] / max_value))

With a height of 500 pixels, this produces the result:

scaled_values = [50, 100, 1, 200, 250, 300, 350, 450, 500, 400]

I know how wide each bar should be too, right? There are eleven data points, and the width
of the screen is 800. I'll take 100 off for the borders, so I've got 11 bars in 700 pixels, =
63.6 pixels width per bar.

■ We know what that bar graph should look like, yes? It's a good idea to draw this out on
graph paper, keeping in mind the size of the window and the fact that the x-y position (0,
0) is in the upper left corner of the window. Here's what I drew:

In Processing, each rectangle is defined in terms of the x-y coordinates of its upper left
corner, and the width and height of that rectangle, and this makes the loop a little more
tricky...

Take a look at this code and see if you can figure out how it works, based on the graph shown
above:

 bar_width = (width - horz_margin * 2)/len(values_scaled)
 x = horz_margin
 for i in range(len(values_scaled)):
 y = height - values_scaled[i]
 rect(x, y - vert_margin, bar_width, values_scaled[i])
 x += bar_width

GETTING STARTED
■ Set up a directory that you can use to store the files that you'll be working with in this

assignment.
■ The three programs in this assignment are designed to be completed in order, so that you

can start thinking about the spacial relationships of characters (and then pixels). Make sure
you have a good understanding of each program before moving on to the next one.

EXTENSIONS
■ The column-based bar graph is fine as far as it goes, but graphs are worth nothing without

a scale. Add code to your vert_graph program so that there is an appropriate vertical
scale that accompanies the graph.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)
1. How many pixels wide and high is the display on your computer? How many total pixels is

that?
2. How man "pixels per inch," or "dots per inch" (dpi), does your computer display have?

How does this compare with the display on your mobile phone?
3. Just about everybody appreciates the detail of pixel based images, but writing graphics-

based programs is challenging. What are the benefits of writing graphics-based programs?
What are some of the challenges?

4. Do a search for the keywords "curses" and "terminal." What does the curses programming
library allow you to do that can't be done in a standard terminal?

