EXERCISE SOLUTIONS

1. Write a while loop that prints the numbers from 1 to 20 , as well as their squares, in this format:
```
1 squared = 1
2 squared = 4
3 squared = 9
\(i=1\)
while i < 21:
    print(i,"squared = ",i*i)
    i \(=\mathrm{i}+1\)
```

2. Write a for loop that counts from 0 to 100 and prints out each number.
```
for i in range(101):
    print(i)
```

3. Write a while loop that asks the user to enter a series of positive numbers that will be added. The loop stops accepting input when the user enters a 0 . Then print out the sum of those numbers.
```
sum = 0;
in_value = 0;
whīle in_value != 0:
    in_value = input("Enter a positive number to be added (0 to quit): ")
    if
        sum += in_value
    elif (in_value < 0)
        print("Negative numbers aren't allowed")
print("The sum of the positive numbers you entered is: ", sum)
```

4. Write a for loop that prints out the numbers $1,4,7,10,13, \ldots, 298,301$.
```
for i in range(1, 302, 3):
    print(i)
```

5. Write a while loop that prints out the numbers $0,4,8,12, \ldots, 96,100$.
```
i = 0
while (i <= 100):
    print(i)
    i += 4
```

6. Write an infinite loop that has the user repeatedly enter passwords until he/she enters the correct password, a password of your choosing. Once the password is entered, break out of the infinite loop.
```
the_password = "70p53cr37"
while True:
    pw_attempt = input("Password: ")
    if pw_attempt == the_password:
        break
    print("Invalid entry.")
# If we get here, they've entered the correct password!
print("You're in!")
```

7. Write a loop that displays the Fibonacci sequence. The first two numbers in the Fibonacci sequence are 0 and 1. Subsequent numbers are found by adding the previous two numbers, so the sequence begins 0,1 , $1,2,3,5,8,13, \ldots$

There are ways to solve this using something called recursion, but here we'll just use a loop to solve it. The problem doesn't indicate how many times we should run the loop, and the Fibonacci sequence is infinite, so... I guess this will be an infinite loop that the user will have to manually break out of.

```
first_num = 0
second_num = 1
print("The Fibonacci series (Ctrl-C to quit)");
while True: # infinite loop!
    print(first_num)
    temp = first_num + second_num
    first_num = second_num
    second_num = temp
```

8. Write a "prime finder" loop that determines whether a given number n is prime or not. Any integer $\mathrm{n}>2$ is prime if no number between 2 and \sqrt{n} (inclusive) evenly divides into n. The loop should return true if n is prime and false if n is not prime.
```
for i in range(2, int(math.sqrt(n)) + 1):
    # Each time we go through the loop, check to see if the current i divides
    # evenly into the prospective prime n. If it does, we know this number is
    # not prime so we should return false.
    if (n % i == 0):
        return False # it's not a prime
# If we fall out of the loop having not returned false, it must be that none
# of those numbers divided evenly into our prospective prime. Therefore, it
# must be prime and we can return true.
return True # it IS a prime!
```

