
Machine Learning Worksheet—Perceptron, Neuron

Background
Machine learning typically occurs via a neural network, and the fundamental building block of a neural
network is the neuron. A neuron is modeled very roughly on the biological neurons in a brain: input 
signals from dendrites potentially activate the neuron’s soma, in which case a signal is sent as output 
via axons.

In this activity we’ll be exploring the operating principles of a perceptron and a neuron. The 
perceptron, initially conceived of and developed in the 1950s and 60s, is a simpler model, while the 
neuron has some features that make it much more useful for building a neural network (NN).

Perceptron Example 1
You’ve decided that you might want to go for a hike this weekend, but only under certain conditions. If
the temperatures are going to be right (not too hot, not too cold), that would be good. If you’ve got 
some friends that want to join you, that would be even better. Also, you’d prefer to not go hiking in the 
rain. None of these circumstances would be an absolute “deal-breaker” on its own, but if it’s raining 
and you’re hiking alone, well... that doesn’t sound like much fun. Let’s say that you’ll go hiking as 
long as two of these three conditions are satisfied.

It would be possible to write a series of conditional statements to help analyze the situation, but let’s 
write this using a perceptron instead. The perceptron will have three binary inputs, one for each of the 
factors you’re evaluating, and a minimum threshold value that we have to meet if we’re going to go 
hiking. The binary result will indicate that we should either go hiking, or not go hiking.



Machine Learning Worksheet—Perceptron, Neuron

What does this look like for our hiking scenario? We can label each of the input conditions on the left 
side, and for a given scenario, assign them a value of 0 or 1 (false or true), depending on the specifics 
of that scenario. The threshold condition is on the right. To decide whether or not we go hiking, you 
sum the values of the inputs, see if they meet the threshold requirement, and then identify the result.

Let’s consider this example. In the scenario shown here, all three of the inputs have a value of 1: the 
good temperatures input has a value of 1, meaning that we have good temps. Friends can join has a 
value of 1, meaning we’ll have company. And no rain has a value of 1, meaning “yes, we’ll have no 
rain.” The sum of our inputs is 3, which is greater than or equal to 2, so we should go hiking.

If our good temperatures condition was not met, and friends couldn’t join, the diagram would look like 
this:



Machine Learning Worksheet—Perceptron, Neuron

Activity 1
Create your own Perceptron based on a simple set of 3-4 binary input conditions on the left, a threshold
value on the right, and a binary outcome.

Perceptron Example 2
The binary (0 or 1) inputs that we’ve used to this point are convenient, but they lack the ability to “fine-
tune” our decision making. If “hiking with friends” is a little more important to us than the “no rain” 
requirement, we’d like to be able to weight that aspect of the decision more heavily.

We can modify our perceptron to do just that by introducing a weight factor for each of the inputs:



Machine Learning Worksheet—Perceptron, Neuron

When we perform the calculation, we’ll take each input x and multiply it by its corresponding weight w
before adding all the xw terms together.

What should we choose for our weights? As I think about hiking, the most important of the three 
factors is whether or not friends are going, so I’ll give that a slightly higher weight of 0.80, a value that 
I selected somewhat randomly. I’m also not a big fan of the rain, so I’ll give that a pretty good weight 
as well: 0.70. I like good temperatures, but that’s the least important factor, so I’ll give it the lowest 
weight, 0.60. See the diagram below for how these weights were placed into the perceptron.

(Again, these weights were arrived at somewhat randomly. If you’re wondering how you would go 
about selecting your own weights, we’ll answer that question in a moment.)

We’re also going to modify the threshold slightly: rather than calculating a result and comparing it to 
the threshold, we’ll use a bias value to modify our result. For this example I chose (again, somewhat 
randomly) a bias of –1.35. When that negative value is added to our calculation, the result will be 
closer to 0, either positive or negative. If my inputs and weights, added to the bias, give me positive 
result, I’ll go hiking. If I get a negative result, I won’t go hiking.

This interpretation of the results can be formalized in an activation function, which tells us how to 
determine if the output is 1 (going hiking) or 0 (not going hiking). Here, that function is simply: if 
result >= 0: 1 (go hiking), else (result < 0): 0 (don’t go hiking).
Let’s take a look at our new perceptron.



Machine Learning Worksheet—Perceptron, Neuron

Take a look at this perceptron. If friends can join (1)  and there’s no rain (1) but the temperature isn’t 
good (0), what is the numeric result? Will our perceptron recommend that we go hiking?

What if there are good temps (1) and no rain (1), but friends can’t go (0)? What is the numeric result? 
Will the perceptron recommend that we hike?

Neuron Example
Our perceptron example to this point has a simple activation function that is based on that threshold 
(bias) value, but this is a limitation in our model. A neuron is similar to a perceptron but with the 
following important differences: the activation function is non-linear, and the output might be more 
than just a binary result (although we still use binary outputs sometimes). Those distinctions might not 
make much sense at this point, but you’ll understand a bit more after we look at this next example.



Machine Learning Worksheet—Perceptron, Neuron

The basic graphical format of our neuron diagram remains the same as that of the perceptron:

The difference is in our activation function and outputs. One activation function that is commonly used 
when learning about neural networks is the sigmoid function (sometimes indicated with a lowercase 
sigma, σ).

y=f (x)=σ (x)= 1
1+e− x

Here’s what the function says: take any positive x value, and you’ll get a y that approaches a maximum 
value of 1 as x approaches +∞; take any negative x value, and you’ll get a y that approaches 0 as x 
approaches -∞.

In this graph of the sigmoid function, you can see that positive values of x as they move to the right 
approach a y result of 1, while negative values of x approach a y result of 0. The results of the sigmoid 
function will be a value such as 0.21, or 0.923, some decimal value between 0 and 1. 

+x-x

+y

-y



Machine Learning Worksheet—Perceptron, Neuron

Let’s calculate a few sample sigmoid function outputs using  different values.

1. Example: Using f (x)=σ (x)= 1
1+e− x

, calculate σ(1). 

Answer: Use a calculator to calculate 1
1+e−x

= 1
1+e−1=0.7311

2. Calculate σ(5). ___________

3. Calculate σ(10). ___________

4. Calculate σ(–1). (Watch your signs on the exponent here!) ___________

5. Calculate σ(–5). ___________

6. Calculate σ(–10). ___________

Based on our results, you can see that a broad range of x values are being converted to a small range of 
results, all in the range 0-1. This is a very useful strategy for something like our hiking neuron, which is
intended to identify one of two different situations: hiking or not hiking.

In machine learning, this kind of structure is called a binary classifier.

Let’s go hiking...?
Let’s look again at our hiking situation. Let’s apply our neuron model to the conditions temps not 
good, friends going, no rain (input values of x1 = 0, x2 = 1, x3 = 1).



Machine Learning Worksheet—Perceptron, Neuron

Use those 0, 1, 1, inputs with the weights of 0.60, 0.80, 0.70 and the bias of -1.35 first:

x1w1+x2w2+x3w3+b

(0 •0.60)+(1•0.80)+(1•0.70)+– 1.35=0.15

Now run that through the sigmoid function to get our output:

output=σ (0.15)

output= 1
1+e− x

= 1
1+e−0.15

output = ______________

If you used a calculator, you’ll find that the output of the activation function is 0.5374. What does that 
result mean for us? If 0 is don’t go hiking and 1 is go hiking, it appears as if this neuron is telling us 
that it’s only slightly recommending that we go hiking—the output is slightly closer to 1 than it is to 0. 
This despite the fact that two of our concerns (going with friends and no rain in the forecast) have input
values of 1, and those are the most heavily-weighted items.

If I had to guess, I’d say that this neuron isn’t working quite as well as I thought it would.

How can we make it better?

Manually adjusting weights and bias
If the neuron isn’t producing the kind of hiking advice that we think it should, we need to make some 
adjustments.

You might have already guessed at least part of the solution: if we were to tweak the values for our 
weights and bias we could almost certainly get the neuron to do a better job of identifying our hiking 
recommendation.

Take a moment to adjust one or more of the weights and bias in our neuron, and check to see you get a 
better output result. Also, try different input combinations—0, 1, 0, or 1, 1, 0—to see if the outputs 
work well for those situations, too.

Computers can do better
Ultimately, we want to automate this process. A computer can take a given set of inputs, weights, and 
biases, run the numbers, and see how well the output matches our expectations. Then, it adjusts the 
weights and bias in a systematic way, and checks to see if the output is any closer to matching our 
expectations. This process of identifying the weights-and-biases that turn inputs into correct outputs is 
one type of machine learning, called supervised learning because we’re explicitly training the computer
on what we’d like it to learn.


