
AP Computer Science Project–Car Dealership

ASSIGNMENT OVERVIEW
In this assignment you’ll be creating a small package of files which will model a Car Dealership. The
package will include at least three files: Car.java, CarDealership.java, and
CarDealershipRunner.java, all written by you, possibly with a partner.

This assignment is worth 50 points and is due on the crashwhite.polytechnic.org server at 23:59:59 on the date
given in class.

BACKGROUND
A common use for software is managing inventory. A Car Dealership has to manage an inventory of cars,
including adding to that inventory, selling cars, tracking sales, etc. This project provides you with the
opportunity to practice your ArrayList manipulation skills.

This diagram from the BlueJ IDE shows graphically the relationship between the Car class, with arrows indicating that it is
“used-by” the CarDealership and CarDealershipRunner classes.
The CarDealershipRunner class also uses the CarDealership class.

PROGRAM SPECIFICATION
Create a package of Java classes as described here.

1. Write a Car class that models a Car by its name, number of miles on the odometer, and selling
price. Include:
a. a constructor with all three of those values as parameters
b. appropriately named getters for each instance variable
c. a setPrice() method that allows the price of the car to be updated
d. a toString() method that returns a String that allows for convenient printing.

2. Write a CarDealership class that models a Car Dealership, including:
a. A constructor that requires no parameters. The inventory for the dealership will be initialized,

but no cars initially added. Additionally, the revenue of the dealership sales should be tracked
as cars are sold.

b. A toString method that successively calls the toString method on each car in the lot.
c. An addInventory method that accepts a Car as a parameter and adds it to the dealership,

placing the Car at the last position in the inventory of cars.
d. A find method that takes a Car’s name as a parameter and finds the position of that car in the

inventory.
e. A sell method that accepts an integer and “sells” the car at that position, removing it from

the inventory and adding the price of the car to the revenue for the dealership.
f. A getRevenue method that returns the current total revenue for the dealership.
g. A discount method that accepts a mileage amount and a discount percentage as parameters,

and goes through all the cars in the inventory that have at least that many miles and reduces
the price of those cars by the indicated percentage.

h. A swap method that accepts two integers for positions and swaps the two Car objects located
at those positions.

i. A priceRange method that accepts two double values (lowest and highest) and returns an
ArrayList of all Car names that are within that price range.

3. A CarDealershipRunner class with a main method that demonstrates the capabilities of the
CarDealership class by creating a CarDealership object and manipulating it.

DELIVERABLES

CarDealership.zip

This single file will be a zipped directory (folder) of your project. It will include as a minimum the three
files listed above along with any other classes you create during the development of your program.

To submit your assignment for grading, copy your file to your directory in
/home/studentID/forInstructor/ at crashwhite.polytechnic.org before the deadline.

ASSIGNMENT NOTES
■ This project is mostly an implementation challenge. Three classes have been identified for you in

the statement of this problem along with specific constructor and method specifications. The
methods are representative of the kinds of things a class needs to be able to do.

■ It’s not uncommon to have a larger class whose role is to manipulate objects contained in an Array
or ArrayList. Here, the CarDealership class is manipulating Car objects, and the methods you
write will perform specific tasks on an ArrayList of Car objects.

■ As can be seen from the specifications above, a number of different methods need to be written
for the CarDealership. It makes sense to write and test these methods one at a time, particularly
as some methods might be called by other methods. A standard approach to developing this project
would be:
1. Begin writing the Car class.
2. Begin writing the CarDealershipRunner class with a main method that tests the Car class.
3. Continue developing the Car class, and continue writing tests in the CarDealershipRunner to

test those methods.
4. Once Car has been developed, begin writing the CarDealership class.
5. Continue writing methods for the CarDealershipRunner class, along with additional tests

that demonstrate the effects of those methods.
6. Continue until all methods for all classes have been written and tested.

A sample test run is included at the end of this document.

GETTING STARTED
1. With paper and pencil, and possibly in collaboration with a partner, sketch out the basic features of

each class, including instance variables, constructors, accessor methods, and mutator methods.

2. Consider writing some pseudocode that you can use to begin implementing those classes.

3. Create a new project in BlueJ, VS Code, or some other IDE that will allow you to manage this
assignment.

4. Begin writing following the strategies described above in the Assignment Notes.

5. Once a day or so, archive/zip your project folder and save a backup copy of it on another device or
machine: a flash drive, your home folder on the crashwhite.polytechnic.org server, etc.

6. When your program is completed (but before the deadline), copy a final archived package
(CarDealership.zip) to the server as indicated above.

QUESTIONS FOR YOU TO CONSIDER (NOT HAND IN)
1. This project has a “manager” class, CarDealership, that has methods to manipulate an ArrayList

of objects belonging to the Car class. Java already has methods to manipulate an ArrayList of
objects directly—get(), set(), etc.—so why would we go to the trouble of writing a separate
CarDealership class?

2. The CarDealership class itself is run by the CarDealershipRunner class via its main()
method. How many main methods is a Java program allowed to have?

SAMPLE TEST RUN

Printing out inventory:
CarDealership[inventory=
Car[name=RAV4,milesTravelled=0,price=40000.0],
Car[name=Honda CR-V,milesTravelled=10000,price=30000.0],
Car[name=Ford Bronco,milesTravelled=5000,price=50000.0],
revenue=0.0]

Swapping first and last cars:
CarDealership[inventory=
Car[name=Ford Bronco,milesTravelled=5000,price=50000.0],
Car[name=Honda CR-V,milesTravelled=10000,price=30000.0],
Car[name=RAV4,milesTravelled=0,price=40000.0],
revenue=0.0]

Getting a list of cars w/ prices between 25000 and 40000:
Car[name=Honda CR-V,milesTravelled=10000,price=30000.0]
Car[name=RAV4,milesTravelled=0,price=40000.0]

Discounting cars with >= 8000 miles by 10%:
CarDealership[inventory=
Car[name=Ford Bronco,milesTravelled=5000,price=50000.0],
Car[name=Honda CR-V,milesTravelled=10000,price=27000.0],
Car[name=RAV4,milesTravelled=0,price=40000.0],
revenue=0.0]

Looking for the RAV4 on the lot:
It's location is: 2

Selling the RAV4:

Selling the car at position 0:

Identifying the total revenue for cars sold:
90000.0

Printing out the final inventory and sales:
CarDealership[inventory=
Car[name=Honda CR-V,milesTravelled=10000,price=27000.0],
revenue=90000.0]

