Lab: AP Review Sheets Chapter 10: DC Circuits Jeffrey Liu April 2024

1 Background

This chapter concerns the movement of charge through simple DC (direct current) circuits containing resistors and capacitors.

2 Vocabulary

- Circuit: In a circuit, components (batteries, resistors, capacitors, inductors, lightbulbs, etc) are connected by conductive wires or traces through which current can flow.
- EMF (ϵ or E, Volts (V)): An EMF (also written as emf), or *electromotive force*, is a potential difference where current is flowing.
- Terminal Voltage ($V_{terminal}$, Volts (V)): The potential across the terminals of a battery when the battery is powering a circuit. The terminal voltage of a battery is lower than the battery's nominal voltage due to the battery's internal resistance.
- Resistor $(R, Ohms (\Omega))$: Components which restrict the flow of current (I) .
- Capacitor $(C,$ Farads (F) : Components which store energy by accumulating charges two closely spaced surfaces insulated from each other.

3 Topics

EMF & Terminal Voltage

When a circuit is "open" (current is flowing through the circuit), the battery is providing an emf, an electromotive force. This electromotive force E (also written as ϵ) is measured in volts.

When a battery is in a circuit through which current is flowing, the battery's *terminal voltage* (voltage across the battery terminals) is less than the battery's nominal voltage (the voltage of the battery when it is not connected to a circuit). This is due to the *internal resistance* (r) of the battery, which is not to be confused with the resistance of the actual circuit, denoted using R.

$$
V_{terminal} = E - Ir
$$

Resistors in Series & Parallel

Resistors restrict the flow of current through a circuit. The following equation models the effect of a resistor on a simple circuit:

$$
I=\frac{\Delta V}{R}
$$

Figure 1: Resistors in Series and Parallel

Resistors can be arranged in series and in parallel.

Resistors in series all maintain the same original current I but the voltage across each resistor in series varies according to $\Delta V = IR$. Resistors in series produce a total resistance of:

$$
R_{eq} = R_1 + R_2 + \dots
$$

Resistors in parallel share the same potential difference but the current varies according to $I =$ ΔVR . Resistors in parallel produce a total resistance of:

$$
\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots
$$

Kirchhoff 's Rules

The two important rules are the Junction Rule and Loop Rule.

Junction Rule: "The total current traveling into a node (a connecting point for 3 or more wires) = the total current coming out of the node"

$$
\sum I_{in} = \sum I_{out}
$$

	$\frac{1}{2}$	
		\mathbf{u}
	$\frac{1}{2}$	

Figure 2: Junction Rule

Loop Rule: "The sum of the potential changes around a closed loop must equal zero"

$$
\sum \Delta V = 0
$$

Figure 3: Loop Rule

RC Circuits

RC circuits contain a resistor and capacitor in series. When current is flowing, charges build up on the capacitor until the capacitor is full, at which point current is 0.

Figure 4: RC Circuit

The accumulation of charges on a charging capacitor is modeled using a time constant τ , which we obtain using $\tau = RC$. We use this time constant in the following equation to determine the charge of a charging capacitor at a given time:

$$
q = CV_0(1 - e^{-\frac{t}{\tau}})
$$

Figure 5: Charging Capacitor

4 Formulae

Terminal Voltage: $V_{terminal} = \epsilon - Ir$ Resistors in Series: $R_{eq} = R_1 + R_2 + ...$ Resistors in Parallel: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$ Junction Rule: $\sum I_{in} = \sum I_{out}$ Loop Rule: $\sum V = 0$ Charge of Charging Capacitor: $q = CV_0(1 - e^{-\frac{t}{\tau}})$ Current during Charging Capacitor: $I = \frac{\epsilon}{R}e^{-\frac{t}{RC}}$ Voltage of Charging Capacitor: $V(t) = V(1 - e^{-\frac{t}{\tau}})$ Time Constant: $\tau = RC$

5 Problems

5.1 Problem 1

The terminal voltage of a 15 V battery is 9 volts when providing 20 watts of power to an external load resistor R. Determine R and the internal resistance of the battery.

Solution:

We can first calculate I using $P = V_t \times I$, which gives $I = \frac{20}{9}$ amps. Then, using Ohm's law, $V_t = I \times R =$, we can determine $R = \frac{V_t}{I} = \frac{81}{20} = 4.1$ ohms.

Now we can determine r using $V_{terminal} = \epsilon - Ir$ by rearranging to $r = \frac{\epsilon - V_t}{I} = \frac{27}{20} = 1.4$ ohms.

5.2 Problem 2

Express the total resistance of this configuration of resistors in terms of R1.

Figure 6: Problem 2 Circuit

Solution:

We can treat the three resistors in parallel like one single resistor using the equation:

$$
\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots
$$

Using this equation, the resistance of the three parallel resistors is $(\frac{1}{R1} + \frac{1}{R1} + \frac{1}{R1})^{-1}\Omega$.

Now, we can add the resistances of the two resistors in series, giving us a total resistance of $2 * R1 + (\frac{1}{R1} + \frac{1}{R1} + \frac{1}{R1})^{-1} \Omega.$

5.3 Problem 3

An RC circuit contains a resistor $R = 10 \text{ k}\Omega$, an uncharged capacitor $C = 2 \mu\text{F}$, and a 12 V battery. Determine the time constant and voltage across the capacitor after 10 milliseconds.

Solution:

The time constant is given by $\tau = RC$, giving $\tau = 20 \times 10^{-3}$ s.

The voltage across a charging capacitor is given by $V(t) = V(1 - e^{-\frac{t}{\tau}})$. Since $t = 10$ ms, we can directly substitute into this equation.

$$
V(t) = V(1 - e^{-\frac{t}{\tau}})
$$

\n
$$
V(5\tau) = 12(1 - e^{-\frac{10 \text{ ms}}{20 \text{ ms}}})
$$

\n
$$
V(5\tau) = 12(1 - e^{-0.5})
$$

\n
$$
V(5\tau) = 4.72 \text{ V}
$$