Lab: AP Review Sheets

E&M Chapter 7: Electric Potential

By James Miller

Background / Summary

Electric potential is an electric field's ability to move a particle through space. When a field has substantial ability to move a particle, we say that it is at high potential. Likewise, if it would require a lot of energy to move a particle through space, that is a low potential point. Electric potential (V) can be defined as the potential energy (U) per unit charge (q).

Relevant Formulas (courtesy of the AP Equations sheet)

$$\begin{split} E_x &= -\frac{dV}{dx} & U_E = qV = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r} \\ \Delta V &= -\int \vec{E} \cdot d\vec{r} & \Delta V = \frac{Q}{C} \\ V &= \frac{1}{4\pi\varepsilon_0} \sum_i \frac{q_i}{r_i} & \Delta E = W = \int \vec{F} \cdot d\vec{r} \end{split}$$

Other Relevant Formulas (and alternative derivations)

$$V = \frac{U_E}{q}$$
 $V = \frac{Q}{C}$ $V = \frac{P}{I}$ $V = IR$

Other Key Points

- The units for electric potential are Volts, defined as Joules per Coulomb
- Charges will be inclined to move away from like charged ends of fields
 - A positive charge moves towards the negative end of a field
 - o Likewise, negative charges naturally move towards the positive end of a field
- Equipotential lines are lines along a path of equal electric potential. These lines will always be perpendicular to electric field lines.

Review Problems

- 1. [Easy] Why are voltages always measured between two points? (Textbook 7.10)
- 2. [Medium] Two parallel conducting plates are separated by 10.0 cm, and one of them is taken to be at zero volts. (Textbook 7.39)
 - a. What is the electric field strength between them, if the potential 8.00 cm from the zero volt plate (and 2.00 cm from the other) is 450 V?
 - b. What is the voltage between the plates?
- 3. [Hard] Two large charged plates of charge density $\pm 30\mu\text{C/m}^2$ face each other at a separation of 5.0 mm. (Textbook 7.61)
 - a. Find the electric potential everywhere.
 - b. An electron is released from rest at the negative plate; with what speed will it strike the positive plate?

#1

Voltages are always measured between two points because we can only determine the <u>difference</u> in potential between points.

a)
$$\Delta V = -\int E dr = E d$$

 $450 = -E(0.08)$
 $|E| = 5.63 e 3 V/m = [5.63 k V/m]$

b)
$$\Delta V = -Ed$$

 $V = (5.63e3)(0.10) = 563V$

Recall that
$$E = \frac{\sigma}{\epsilon_0}$$

a)
$$AV = Ed$$

$$AV = \frac{6}{E0}d$$

$$= \frac{30e6}{8.85e12} (0.005) = 1.69e4V$$

$$= 16.9kV$$

b) Converting U to K

$$V_E = qV = K = \frac{1}{2}mv^2$$

Given on the earn sheet 1.6e-79 (16.9)

$$1.6e^{-19(16.9)} = \frac{1}{2}(9.11e^{-31})\sqrt{2}$$

$$\sqrt{2} = 5.94e12$$