Motion in Two Dimensions

Background:

This chapter covers motion in two dimensions, which builds off of our understanding of vectors.

Major Topics:

The major topics covered in this chapter are projectile motion, uniform circular motion, and relative motion.

Important Vocabulary:

- Projectile Motion: an object moves through the air and is only subject to the force of gravity
- Uniform Circular Motion: motion of an object in a circular path
- Centripetal/Radial Acceleration: acceleration of an object moving in a circle that points toward the center of the circle
- Tangential Acceleration: acceleration of a changing speed, moving object that acts along the tangent to the curved path
- Unit Vectors for Circular Motion:
 - $\hat{\theta}$: unit vector tangent to the circular path (positive indicates counterclockwise)
 - \hat{r} : unit vector along the radius vector (positive indicates outwards)
- Relative motion: motions occurring relative to different frames of reference

Important formulae:

• Kinematics Equations (continuation from previous chapters):

$$\circ v = v_0 + at$$

$$\circ \Delta y = v_0 t + \frac{1}{2}at^2$$

$$\circ v^2 = v_0^2 + 2a\Delta x$$

- Centripetal/Radial Acceleration: $a_c = \frac{v^2}{r}$
- Tangential Acceleration: $a_{tan} = \frac{dv}{dt}$
- Relative Motion: $\vec{v}_{a relative to b} + \vec{v}_{b relative to c} = \vec{v}_{a relative to c}$

Diagrams:

Projectile Motion

Uniform Circular Motion

Relative Motion

Motion in Two Dimensions

1. A dart is thrown horizontally at a speed of 10 m/s at the bull's-eye of a dartboard 2.4 m away, as shown in the following figure. How far below the intended target does the dart hit?

Solution:

To solve this projectile motion problem, we need
to use our kinematics equations. We are given as and
$$V_{xo}$$
.
To find by, the first step is finding t.
$$\Delta x = V_x t$$
$$t = \Delta x / V_x = 2.4 / 10 = 0.24s$$
Using t, we can now solve for by.
$$\Delta y = V_{ro} t + \frac{1}{2} a t^2$$
$$\Delta y = (0)(0.24) + \frac{1}{2}(9.80)(0.24)^2 = 0.28224 - 0.282m$$

Motion in Two Dimensions

2. A fan is rotating at a constant 360.0 rev/min. What is the magnitude of the acceleration of a point on one of its blades 10.0 cm from the axis of rotation?

Solution:

Lab: AP Review Sheets

Motion in Two Dimensions

3. A cyclist traveling southeast along a road at 15 km/h feels a wind blowing from the southwest at 25 km/h. To a stationary observer, what are the speed and direction of the wind?

Solution:

To solve	this relative mot	ton problem,	we first need	1 to
break	the velocity vec	stors of the	cyclist and H	ne wind
into the	ir x and y com	iponents.		
eye	115+ (Vo): 45 15	wiho	(Tw): 25 45 Vu	γ
	Vex V	F S T T	Ke-VWX TV	
V	$c_{\rm X} = 15 \cos 45 = 10.6 {\rm km/h}$ $c_{\rm X} = 15 \sin 45 = 10.6 {\rm km/h}$	Vwy=; Vwx=;	25cos45=17.7km/h 25sin45=17.7km/h	
Now we I	need to find the wind relative to	nagnitude a stationar	and direction y observer.	
11.7	11.7 10.6	$V_X = V_{WX} + V_{CX} =$ $V_Y = V_{WY} - V_{CY} =$	17.7+10.6=28.3km 17.7-10.6=7.1km/	/h
	V IVy	V= 28.32+7.12	= 29.2 km/h	
	Vx	0= tan"(7.1/2	8.3)= 14.1° Nof E	